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Abstract

Fundamental to understanding any human activity is understanding it in
terms of process, yet the representation of process poses difficulties that

require fresh approaches. The study reported here develops representations of
the LOGO programming process which provide the basis for strategy analyses and

a new perspective on problem solving in complex, semantically rich task

environments such as LOGO.
Nine students, ages ten to fourteen, who had been identified as gifted

and had previous programming experience, were trained once a week for one and

a half hours over a fifteen week period in the rudiments of LOGO. The focus

of the analysis was the performance of the students on three tasks which
involved graphics, word-and-list, and interactive game programming. To carry

out the analysis, software tools were developed for the collection and
analysis of subjects' interactions with the computer while programming. The

product of this analysis is a representation of the programming process in the
form of a problem behavior graph which plots the programmer's path through the

two problem spaces which the LOGO programming environment involves. These

graphs are the basis for identification of the programmers' strategies.
Three different layers of strategies were exhibited in the students'

programming: top-down design strategies, depth-first component-based
strategies, and subsidiary search and debugging strategies and tactics. The

model elaborated through the strategy analysis highlights the role of the task

environment in supporting the students' problem solving, and it calls into
question commonly held views concerning the relationship between strategies
and knowledge and the way in %hich goals direct the problem solving process.

Introduction

Fundamental to understanding any human activity is understanding it in terms
of process, in terms of change, development, movement. As Vygotsky observed,

"To encompass in research the process of a given thing's development in all

its phases and changes ... fundamentally means to discover its nature, its

essence, for 'it is only in movement that a body shows what it is"

(Vygotsky, 1978, pp. 64-65).

Yet representing process has inherent difficulties. At some level,
"capturing" a process requires fixing it and making it stationary. A movie

gives the illusion of life, of process, but in actuality it is simply a series

of snapshots in very rapid succession. The adequacy of a representation of a

process is determined, in the end, by the density of the snapshots that form
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its basis, the continuity that the representation provides for these
snapshots, and the underlying structure that it reveals.

The research reported in this paper is an attempt to capture a process,
specifically the programming process of a group of gifted young students

learning LOGO. The representation of this process which is developed here is
based on high density observations and specifies the structures of goals and
action sequences that the programming process involves. It is the application

of a method which follows in the process analytic tradition of Newell and
Simon (1972), but which diverges from it in important respects.

The promise of the application of a new method to a phenomenon is that it will
lead to new perspectives on that phenomenon. The results obtained in this
research point to a view of the programming process and problem solving
generally that challenges some widely held assumptions; specifically, it
challenges views about the relationship between strategies and knowledge and
the role of goals in problem solving. Against a background of issues of
method and theory, the data sources, method, and model for this study are

outlined. This is followed by a taxonomy of strategies, a report of results
from the measured used, and a discussion of the issues raised in the study.

Background

Issues, both of method and theory, need to be addressed to provide a rationale
for the particular approach that has been adopted here. This rationale is not

designed to convince but to orient the reader to considerations that have led
to the development of this approach.

In terms of method, the lack of suitable precedents in the literature for
carrying out a study of the LOGO programming process suggests the need for the
development of fresh approaches. In terms of theory, questions about the
adequacy of problem solving models based on well-structured tasks as applied
to semantically-rich, open-ended tasks suggest the need for modification of

these models.

The literature on LOGO programming, especially within the educational research
community, has largely focused on the issue of whether there are benefits to
learning LOGO, whether the skills learned in programming have effects on other
skills, particularly the core literacy and numeracy skills which are the focus

of the school curriculum (Clements, 1985). However, with some notable
exceptions (Carver, 1987; Carver & Klahr, 1986; Klahr & Carver, 1988), little
attention has been paid to what goes on in the programming process itself
(McAllister, 1991, 1992).

There is, however, a subsZantial literature on the programming process as
exhibited by university students and professional programmers. In much of

this research, some form of protocol analysis (Ericsson & Simon, 1984; Newell
& Simon, 1972) is used. In this method verbalizations of problem solvers as
they do tasks are used as the data base for developing and testing models of
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the problem solving process. However, objections have been made in principle

against the use of verbalizations (Nisbett & Wilson, 1977) and against the

applicability of protocol analysis in studies of human-computer interactions

(Praetorius & Duncan, 1988). In addition, there are tremendous costs and

risks associated with collecting, transcribing, and noding verbalizations and

making inferences from them (Waterman & Newell, 1972/. Moreover, specific

difficulties associated with getting children to verbalize during probiem

solving, may preclude the use of this approach in a study of young students'

problem solving.

Models originally developed for the analysis of well -structurz.d tasks (Newell

& Simon, 1972) have been extended to semantically rich domains such as

programming (McAllister, 1990). These models, which focus on the goal-

directed nature of problem solving, involve a cycle of goal-setting, acting,

and evaluating, with goals directing the cycle by initiating and controlling

actions and serving as comparison standards for results of actions (Brenner,

Ginsberg, & von Cranach, 1985). The impression left is that the goal -

representations which direct action are unitary and will-articulated, and that

goals are stacked or otherwise organized in a hierarehical fashion to ensure

that action is under the control of one particular goal until the goal is

attained or abandoned (Broadbent, 1985).

Questions can be raised about the viability of extending these models to

programming. In a well-structured task, such as the Tower of Hanoi, the goal

is clearly envisioned at the outset, and there is one "best" path to that

goal. In contrast, while a programming task may have pre-set specifications

as to what constitutes a solution, a variety of different solutions may be

possible as wall as different solution paths, any one of which is as

satisfactory as the other. This suggests that models based on well-structured

tasks may be inadequate for semantically rich domains to the extent to which

they depend upon goals being well-defined.

The process analytic approach to the study of the programming process has

proven fruitful, but its limitations are apparent, especially as they would

apply to a study such as this. Alternative process-oriented methods do exist,

however, and can provide the basis for the development of more satisfactory

models of the programming process.

Within the Child Study tradition, specimen description (Barker & Wright, 1971)

has been widely used to collect records of children's behavior. However, like

protocol analysis, this form of naturalistic observation is extremely time-

consuming and often unreliable. Automated process analysis systems, using on-

line records of users' actions on computers, have been devised for mathematics

tasks (Brown & Burton, 1978; Kowalski & VanLehn, 1988; Ohlsson & Langley,

1985; VanLehn & Garlick, 1987) and well-structured problem solving tasks

(Smith, Smith, & Kupstas, 1991). Although it may not be feasible, at least at

this point, to develop a fully automated process analysis of semantically-

rich, open-ended tasks, partially automated process analysis is an achievable

aim, and offers the possibility of a highly reliable method of data collection
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and analysis which could be applied to large groups of subjects.

The method developed in this study is a synthesis of elements from the
literature on protocol analysis, naturalistic observation, and automated user
modelling. The analysis of the LOGO task environment is based on Newell and
Simon's concept of problem spaces and employs automated collection and
partially automated analysis of programming records to develop representations
of the programming process. In what follows, the data source for this study
and the method employed for developing these representations are described,
and a model of the programming process is outlined and then completed using
strategy analyses based on these representations.

EWta source

Nine students, ages nine to fourteen (seven boys and two girls), who had been
identified as gifted and had previous programming experience, were trained
once a week for one and a half hours over a fifteen week period in the
rudiments of LOGO, including graphics, word-and-list, and interactive game
programming.

Three programming tasks were administered to the students on an individual
basis. The first task required them to draw a house and a matching playhouse.
This was administered to them after six weeks of training. The second task
required them to write an interactive program, a High-Low number guessing
game. This was administered after thirteen weeks of training. The final task
was administered after the conclusion of the training and required them to
pnogram another interactive program, a Hangman game. The students were given
90 minutes for the first two tasks, and three hours for the final task.
(Figure 1 shows simplified versions of programs and their outputs.) The
representations of the programming process and the strategy analysis are based
on records of the students' performance on these tasks.

In addition to the programmLlg measures, three measures of programming
knowledge were administered in a regular training session. The first two in
class measures were paper-and-pencil tests. The first in-class measure
covered graphics knowledge and was administered the week following the
individually administered graphics programming task. The second covered word -

and -list commands and techniques for interactive games and was administered
the week following the administration of the High-Low task. The last measure
was a mixed paper-and-pencil and computer task in which the students had to
debug programs, show what programs did, and write programs. The content of
this measure included graphics, word-and-list commands and techniques for
interactive games; students were told to do as much as they could using paper -
and -pencil, and they were then allowed to use the computer to complete the
problems. This measure was given in the last training session and prior to
the administration of the final individually administered programming task.

Task analysis and software tools
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The task analysis which provides the framework for this analysis of the
programming process focuses on ctrtain invariants of the LOGO programming
environment (specifically, the IBM LOGO used in this study). These invariants

provide the points of reference for the software tools that are used to
develop a representation of the programming process. This discussion is
designed to conceptualize how this representation is developed; a more
detailed description of these tools and how they are employed is to be found

in Appendix A.

LOGO is an interpreted language and highly interactive. Programming in LOGO
involves writing procedures; within this environment, procedures are developed
in either a define mode (line-by-line) or an edit mode (full-screen), and
instructions are ca7ried out in an immediate mode. Programming in this
environment can be conceptualized as a search in two basic problem spaces, a
primary problem space (the "procedural space"), which is linked with the
define and edit modes in which procedure are developed, and a secondary space
(the "trial space"), which is linked with the immediate mode in which
experimentation with instructions and testing and debugging of procedures take

place. Figure 2 is a broad characterization of the two problem spaces in the

LOGO environment.

<Insert Figure 2 about here>

The recording software tool developed for this study collects a time-stamped
series of snapshots of the contents of the define and edit modes when they are
exited and snapshots of the immediate mode when a set of instructions is
invoked; these snapshots are taken to represent states of the two problem

spaces. The record generated by this tool provides the primary data base for
the analysis of the programming process.

Another software tool encodes the snapshot record of states by identifying
operators that change these states. Just as there are clear referents for the
states of these problem spaces in the LOGO task environment, there are clear
referents for the operators which change these states. In the define and edit
modes, states are changed by virtue of the definition of procedures and the
insertion and deletion of instructions. The encoding program classifiec the
operators into these categories; for the procedural space it does this by

comparing past and present versions of procedures and identifying the changes
that take place. This program produces an encoded record, essentially a
sequence of states and operators, which is taken to represent the subject's

path through the two problem spaces.

With the identification of referents for the states and operators of the two
problem spaces, the structure of the task environment is fairly clear.
According to this account, search in these two spaces involves going back and
forth between them-- writing procedures, trying them out, and using the
feedback that the computer gives to make changes to the procedures. What

moves the problem solution forward are the concrete actions that the

programmer takes within the environment to create, modify, and invoke



instructions in the LOGO language.

<Insert Figure 3 about here>

Figure 3 shows in an abstract form the various elements that make up the
representation of the programming process. In addition to those that have
already been distinguished, two other elements are necessary for representing
the structure and dynamics of the process: functions and episodes.

The operators evident in the record have functions. For instance, when a
programmer appends a set of instructions to draw a triangle to draw a roof,

the function of the operator is identified as drawing a roof. This is clearly

related to drawing a house, so the higher level function of drawing the
rectangle is drawing the house. Figure 3 shows operators and functions and
how the functions relate to a hierarchy of higher level functions. These

hierarchical structures are assumed to reflect the programmer's goals: When a

programmer inserts instructions to draw a triangle to draw a roof, it can be
assumed that drawing a roof was the programmer's goal and that this goal was a
subgoal of the goal of drawing a house.

Another software tool is used to assist the researcher in grouping operators
according to their functions and, where appropriate, to assign these functions
to more general functions. Once the operators have been assigned functions, a
hierarchically structured functional record is computer-generated; this
functional record is assumed to track the programmer's goal commitments and
their relationships to one another.

The final step in the development of the problem behavior graph is to
"episode" (Barker & Wright, 1971) the functional record. Episodes refer to
beginning-to-end action sequences in the record directed at a specific gnal.
These episodes can have a variety of relationships to one another; the
brackets in Figure 3 represent an episodal structure which occurs quite
frequently in the records. (The different types of episodal structures are

more fully described in Appendix A.)

In this particular episodal structure, there is a shift back and forth from

one problem state to another; a change is made to a procedure, the procedure

is tested, and another :thange is made, and so on. As can be seen in the
figure, the instructions for the body of the house are written and then

tested. Then a triangle is programmed; however, when the procedure is tested,
the house is inverted and does not look like the roof it was intended to be.
The programmer then writes instructions to invert the house and tests the

procedure again_ Thefse interlinked episodes reveal the structure in the

sequence of these actions.

These are the essential elements necessary for representing both the structure
and dynamics of the programming process. This representation involves two
kinds of structures, a hierarchical functional structure which reflects the
goal representations which guide the programming process, and a sequential
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structure which reflects the actual beginning-to-end actions in ;he record.

<Insert Figure 4 about here>

Figure 4 shows an actual problem behavior graph for the initial segment of a
session in which a student was working on the first programming task. On the
left, the states of the procedural space are represented, and on the right,
the states of the trial space. In the middle is the problem behavior graph

itself. The operators are represented as are the functions, and the
indentations show the hierarchical relations between the functions. The
episode brackets on the left of the middle panel shor the sequential structure
of the actions.

It is the analysis of these problem behavior graphs which yields the strategy
analysis. But interpretation of these graphs also requires an initial model
of the programming process which the strategy analysis itself elaborates and
refines.

The model

The model developed for this analysis is referred to as the agenda model. It,

like the models developed for well-structured tasks, is based on concept of a
search control cycle. However, the way in which goals direct the cycle is
viewed quite differently.

In this model, the programmer is thought to begin with a set of task
instructions and ends with a completed program. What happens in between those
two points is a cyclical prt:.ess of search in the two problem spaces of the
task environment.

<Insert Figure 5 about here>

The Figure 5 shows what happens in this cycle. When engaged in the task, the
programmer represents the problem on the basis of the task instructions; this
problem representation includes the goals set by the programmer, and it is
updated throughout the process. In the cycle, a comvarison is made between
the state of the problem and the programmer's goals, goals and methods for
fulfilling them are selected, operators are implemented, and actions are taken
on the system. These actions bring about changes in the system which provide
feedback to the programmer, and the cycle begins again with a comparison
between the programmer's goals and the state of the problem. Throughout this

process knowledge is being both developed and deployed, deployed when methods

are retrieved and used, developed when feedback from the system is used to

obtain information for achieving goals.

In representing the problem, the programmer is seen as constructing an agenda
of goals initially, and this agenda is constantly updated and changed as the
programmer proceeds through the task. The process can be thought of as goal-
directed in much the same way that an agenda is used to manage a meeting that
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can be unruly and unpredictable at times. Goals are set and some of these
goals are accomplished, but there has to be flexibility in the process which
allows shifts in topic, new business, and meeting unpredictable demands that
arise.

In this model, strategies are presumed to control the problem solving process
by organizing the decomposition and scheduling of goals and coordinating the
deployment and development of knowledge in the service of attaining those
goals. The categorization of strategies is done on the basis of an
examination of the overall structure of the episodes, the scope and sequence
of the functional elements within the episodes, and the ways in which the two
problem spaces are used to develop the program.

Types of stratfsies

Table 1 shows the levels of strategies which are distinguished based on an
analysis of the students' records. Three levels of strategies are
distinguished: depth-first, component-based strategies, strategies which are
top-down and breadth-first to some degree or other and are used primarily in
the design phase of the programming process, and subsidiary strategies which
occur within the context of these higher level strategies and are used
predominately to develop knowledge within the programming process itself.

<Insert Table 1 about here>

The depth-first strategies are used after a decomposition of the problem into
identifiable components. Three of these strategies are distinguished: an

incremental strategy, a refinement strategy, and a modular strategy. These
strategies are distinguished primarily on the basis of the way in which the
components themselves are decomposed and their elements dealt with
sequentially.

In the incremental strategy, a component of the program is developed
sequentially, a bit at a time. To construct a square, for instance, a set of
instructions to draw a line is added to the procedure and the procedure is
tested. If the procedure works as intended, the programmer goes on; if not,
the procedure is altered and tested again. In this way, the procedure is
added to until it successfully draws the square.

In the refinement strategy, the component is developed as a whole and then the
solution debugged and refined. Instead of the incremental, bit by bit
approach to drawing the square, for instance, the programmer would write all
the instructions necessary to draw the square, test the procedure and then
refine it until it worked as intended.

In the modular strategy, the component is broken down into subunits which can
be separately developed and integrated into a whole. For instance, to draw a
house with a roof, the programmer would construct a procedure which had as
subcomponents units to draw a square and the triangle. Typically these units

8



would be constructed separately and tested, and than :integrated into a whole

later. s

In the top-down strategies the problem is not decomposed into component ,
eiements which are then worked on separately; in'these strategies, at least
initially, an attempt is made to deal with the whole:problem at once. Those

strategies differ from one another-in the degree to Which the solution is',
articulated at the outset. Four major top-down strategies are distinguished:
a-breadth-first refinement strategy, a nominal strategy, a stratification ,

strategy, and a sequential strategy.

In the breadth-first refinement stfategir, the program is developed as a,whdle

at all levels in an extended episode ending with a test of the superprocedure

and subsequent debugging of terrors in the superprocedure and its

subprocedures.

The nominal strategy is heterogeneoustin nature, top-down and breadth-first to

a point and then depth-first 'thereafter. In this strategy, the programmer
develops the program only at the abstract level of procedure calls, but once

the level of specific instructions (involving the use of primitives) is
reached, a switch is made to constructing the components in a depth7first

fashion.

The stratification strategy is another self-limiting strategy. In Ois "
strategy, the programmer typically defines a stperprocedure, land th6 codes at

the next lower level; when'a function is completely coded, the progfam is

tested and debugged. The principle behind this strategy appears t&be to
construct a program to tpe point where it is possible to get some meaningful

feedback which can be used to develop the program.

The last top-down strategy, the sequential strategy, is similarrto the :1

stratification strategy, but in this strategy what gets coded istdetermidet by

the ordering of the task instructions rather than the requiremenis of the

functioning of the evolving program. Typically, the program is developed in
the form of a superprocedure with the calls to procedures which follow the

order found in the task instructions. Then the c?mponent procedures are

defined in the same order. The flaws of this strategy become quite evident in
programming an interactive game in which a looping structure is required.

The subsidiary strategies occur within the context of these major strategies.

They can be divided into stratiegies that are anticipatory and those that are

used for debugging. The antitipatory strategies of incorporative search and
inferential search are employed to gather information in the trial space for

use in developing procedures. In incorporative search, the successful
instructions are incorporated into the procedures, whereas in inferential
search, inferences made on the basis of experiments in the trial space are
used in the development of the procedures..

The debugging strategies are used in thecontext of seeking feedback from the
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trial space. The reactive debugging strategies use tests of procedures to
adjust and refine the procedures. The kind of debugging depends upon the
nature of the feedback received. When the output of the procedure is
discrepant with what the programmer intended, adjustments are made to the
procedure. When the system gives explicit error messages, the error messages
can be used as diagnostic of the error or simply as symptomatic of the error.
Depending upon the programmer's interpretation, the response can be repair of
the problem indicated by message, repair of a problem at another level which
is presumed to be the source of the error, or further exploration to find the
source of the error.

The strategies of verification search and isolation search are specific
tactics associated with debugging. Verifi,:ation search is used to verify that

a procedure was invoked as intended. Isolation search is used when a
component of the program interacts with other components and is isolated so
that it can be debugged.

For the purposes of identifying the strategies within the students' records,
the sessions were divided into major episodes, defined as enclosing episodes
which have a set of related goals. These sets of goals might be related to a
single component of the program, for instance, the roof of the house in the
first task, or to working out a specific aspect of the program, such as the
flow of control in one of the interactive games. Figure 6 shows an example of
how the strategies are identified for a set of students; the example is taken
from the third task in which all three levels of strategies were exhibited.

<Insert Figure 6 about here>

Results of measures

The results from the three individually administered programming tasks and the
measures of programming knowledge are shown in Table 2. In the case of the
programming tasks, the measure of effectiveness was the number of components
of the program which were successfully implemented, and in the case of the in-
class measures, the level of knowledge was determined by scoring the number of
problems correctly solved. Table 2 shows the students in rank order for both
these measures, and shows the two highest level strategies that they used.
Table 3 shows the intercorrelations among the measures; significant
correlations (using a generols p > .10 level) are shown with an asterix.

<Insert Table 2 about here>
<Insert Table 3 about here>

Although the first programming task and the first measure of LOGO knowledge
did not significantly correlate with one another, the measures within the
other two sets did. However, the measures of knowledge did not significantly
correlate with one another, although the second and third programming tasks
did, and the third programming task significantly correlated with all three of
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the in-class measures of knowledge.

A few students showed consistency in their levels of performance; S1 ranked
first on all the measures, and some of the others (S6, S7, and S9) maintained
fairly constant levels of performance. Others improved their relative
positions as they went on (S2, S5, and 58), others did more poorly (S3) and
others (S4) varied from task to task.

For the first graphics task, the students developed a set of depth-first
strategies, decomposing the problem into identifiable components such as the
body of the house, the roof, and so on, and focusing on programming these
components one by one until they had constructed the whole figure. While most

of the students used a mix of all three of the depth-first, component-based
strategies, some (S6, S7, and S8) used just two, and one (S2) consistently
used the incremental strategy throughout the entire session.

The most frequently employed strategy was the incremental, and it was used by
all the students. The modular strategy was used the least frequently; it was
used either at the outset of the session or after a reorganization of the
program, for instance when a superpro?edure was written midway through the

session. All the students used a form of reactive debugging in which they ran
procedures and then repaired them when there was a discrepancy between the
output and their intentions. Some students (S4, S5, S7, and S9) used this
strategy exclusively, while the others made some appreciable use of
anticipatory search and occasionally some debugging tactics.

The students approached the second task, at least initially, in a
fundamentally different manner than they had the first. Rather than breaking
the problem down into identifiable components, they began by constructing a
superprocedure with most of the components included within it. The

superprocedure might include, for instance, a procedure for getting the
player's name, instructions for generating the random number, and then a
recursive procedure for getting the guesses and determining whether or not
they were correct. Four (S1, S2, S6, and S7) of the students used breadth-
first refinement strategies (S2 began with a nominal strategy but soon
switched), two (S4 and S8) employed stratification strategies and three (S3,
S5, and S9) used sequential strategies.

The depth-first strategies were used in the context of the higher level
strategies, the incremental strategy being the most frequently employed. Only

one student (S3) used the modular strategy in the context of this task, and he

used it in the context of reorganizing his program. The most frequently used
subsidiary strategies was a form of symptomatic debugging in which error
messages were taken as clues to the source of problems in procedures. Some

debugging tactics were also used. Anticipatory search strategies were used

rarely.

No new strategies appeared in the third task. Most of the students began with

one of the top-down strategies. The students who had used breadth-first

11
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strategies in the second task switched to the nominal or stratification
strategies in this task, perhaps in recognition of the greater complexity of
programming the Hangman game. Two (S3 and S5) of the three who used the
sequential strategy on the second task abandoned it for more sophisticated
strategies; the other (S9) reverted to using only depth-first strategies for
the third task. The incremental strategy was the most frequently employed
depth-first strategy, although some (S5, S6. and S4) showed preferences for
the refinement and modular strategies. Reactive and symptomatic debugging
were the most frequently used subsidiary strategies, although there was some
use of anticipatory search, especially in the programming of the graphics
components of the task.

What characterized the third task most fundamentally was the integration of
the graphics and interactive, word-and-list components which were found
separately in the two previous tasks. Some students (S2, S2, S4, and S5) took
approaches which were consistent with the word-and-list context of the third
task, even when programming the graphic components. However, others reverted
to the approaches that they had used in the first task in programming the
graphics portion of the task; for instance, some drew the hanged man as a
static display, as if drawing the house and playhouse, only later linking it
with the cycle for guessing the word.

In summary, across the three sessions, all the students used top-down strategy
and most of them, at some point, employed the more sophisticated breadth-first
and stratification strategies. Over the three sessions, every students used
each of the depth-first stra.ragies at least once. Debugging was the
predominant method used to develop knowledge within the task environment,
although anticipatory search was used especially in programming the graphics.

Observations and discussion

These results and close analysis of the representations of the programming
process provide the basis for observations about problem solving in this
environment and some general speculations about the nature of goal-directed
action. These observations and speculations focus on the way in which
knowledge is developed and deployed, the relationship between expertise and
strategy use, and the evolution of goal representations in the course of
problem solution.

Knowledge is not simply deployed in problem solving, but it is also developed
within the process. The development of knowledge is dependent on the feedback
that is received as a result of action; in the LOGO task environment, that
feedback is received largely through experimentation in the trial space.
Although students were able to retrieve existing knowledge for solutions of
problems, much of the knowledge they required to complete the task had to be
developed within the task envilonment itself. This knowledge was developed
through cyclical search through the two problem spaces, such as in the
construct-test-modify cycle so often ob.--served within the protocols. In

virtue of the structure of this task environment, therefore, knowledge becomes
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very much an interactive accomplishment, both in the sense of the interaction
between the student and the task and in the sense of the interplay between the
two problem spaces which characterizes the search process.

Within the literature on the programming process, the assumption is made the
kinds of strategies used should be a function of the expertise of the
programmer. In general, the literature suggests that top-down, breadth-first
strategies are used by experts whereas the depth-first and bottom-up
strategies are used by novices. However, the types of strategies that these
students used seemed to be sensitive to task demands and, although the more
skilled students used the more sophisticated strategies, the less skilled used
them as well, although clearly to less effect.

Strategy use, rather than being an oiltcome of the programmer's level of
knowledge, seemed to be sensitive to task demands. The first two tasks differ
in terms of their demands and the way in which the students approached these
tasks appeared to differ as a result. In the case of the first task, to draw
a picture of a house and playhouse, it is possible to simply join instructions

together in a rather unstructured way. The separate components need not

interact, they only have to be joined together. The kinds of depth-first
strategies that the students developed were quite sufficient to deal with the
demands of this task.

By contrast, an interactive game is a much more integrated and cc4ipiex
structure. To get a game to work, there has to be a definite sequence of
instructions and the functioning of one component depends on the functioning
of others. The students appeared to respond to the demands of this task by
constructing more integrated programs using strategies that involved a top -
down view and, in some cases, breath-first development of the components.

It is entirely possIble that there would have been very different results if
the kind of word-and-list programming required in the second task had been
taught before graphics programming. However, some of the students reverted to
the kind of programming they had done in the first task when programming the
graphic components in the third task. It would seem, then, that certain
strategies were viewed as appropriate for certain kinds of problems based on
the students' previous experiences with those strategies.

Even the subsidiary strategies were task sensitive to some degree. For
instance, the anticipatory strategies, which were used in the first task, were
largely abandoned in the context of the interactive game programs, although
they were used in programming the graphics of the third task. The students
appeared to know how to experiment in the trial space to gather information
when dealing with the graphics components, but were unable to use this
strategy when it would have required detaching highly interdependent
components of the game programs.

a

Clearly all of these students were novices, yet the fact that they all used a
variety of strategies, some of which could be considered relatively

/
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sophisticated, argues against a close linkage between strategy use and levels
of expertise. Often students used strategies which required,more
sophistication than they seemed to possess. To use a refinement strategy
effectively, for instance, it is necessary to plan out the whole component and
have a good idea of how the various instructions work. Some students appeared
to have the requisite knowledge to carry this strategy out effectively, while
others who used this strategy did not. Thus, the level of knowledge of the
programmer would not seem to dictate or preclude the use of any given
strategy, although it might have a very decided impact on how effective that
use is.

The last point pertains to the nature of the goal representations that direct
the problem solving process. Inspection of the problem behavior graphs
suggests that these representations axe highly complex and vary in their
generality and inclusiveness, that they are not always clearly articulated,
and that they evolve and are constructed in the process of problem solving.

The goal representations operate at the level of episodes, and a single
episode may include a variety of disparate functions. For instance, within a
debugging cycle for the High-Low game, for instance, several bugs may be
revealed by a test of the program. The programmer may subsequently debug the
procedure to get the player's name and also debug the procedure which
generates the random number, and then the programmer will see whether or not
these procedures work in the context of the program. In this case, it would
appear that it is not one goal but several which control the behaviour until
feedback is received.

However, these apparently disparate goals within an episode are not unrelated;
for instance, the functions of getting the player's name and generating a
random number may be related in virtue of their giving values to variables
used in the game or in vlrtue of some even higher level superordinate
function. In other words, what gives the episode unity are the higher level
functional connections among these apparently disparate functions. This does
not mean that the programmer need be explicitly aware of all the functional
relationships involved, however. At a given point, a programmer may have a
sense of how the program works and how the actions he or she takes might make
it work better, and that may suffice as the programmer's goal representation.
Thus, the goal representations which direct the programming process may vary
from one moment to the next in their level of inclusiveness and generality and
in how clear and well-articulated they are.

Unlike well-structured tasks, the goals with which the programmer starts are
not necessarily the goals which end up being achieved; goals will change as
obstacles and opportunities present themselves along the search path. In

other words, the search process is not merely a process in which goals are
set, acted upon, and evaluated, but a process in which goals themselves are
constructed and articulated. And the LOGO task environment supports and
facilitates this formation of goal representations. The LOGO editor provides
an external memory device which supports the programmer's representation of
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the program by allowing review of the procedures at any point in the
development of the program. Feedback from invoked procedures supports the
evolution of goal representations by concretizing them and providing a basis
for their further modification and articulation. In essence, then, action

within the task environment supports the formation of goals.

Actions are clearly goal-directed, but not necessarily in the sense envisioned
in accounts which depend on goals being well articulated. Problem solvers
have motivations and intentions, which may or may not lead to clear goal
representations, but nevertheless do give direction and momentum (Lewin, 1935)
to their actions. The situation of these programmers was often analogous to
the situation of a hungry man hunting in a grocery store without a shopping

list. The man looks at a variety of different foods, weighing whether this or
that one will satisfy the hunger. When asked by a clerk what he is looking
for, he replies, "I'll know when I find it." The process of hunting narrows
down the range of alternatives and defines the desired object which will
satisfy the hunger. The molar activity, "finding something to eat," has a

vague goal, obtaining something edible, which becomes delineated in the

process of hunting and fully so only when a particular food is seized upon.

Action is goal-directed but not goal-driven; what drives the process are
motivations and intentions which do not necessarily have a definite object or

clear representation. In tasks such as those studied here, a need-system to
complete the task, to please an adult, or to prove oneself capable may suffice
to drive the process and provide the basis for constructing goals through

action.

Thus, goal representations are not static but undergo formation and
articulation through action and the feedback received as part of the search

cycle. The picture of the process which emerges is of dynamically evolving
networks of goals of varying degrees of generality, inclusiveness, and
articulation, with different time frames for their achievement (Valsiner,
1987), both determining action and being determined by the results of action.

Implications

The examination of these representations suggests revisions in models of goal-
directed behavior which have been based on well-structured tasks. In addition

to the theoretical implications of this analysis, there are more concrete
implications which are particularly relevant to LOGO programming but may have

relevance for other computer-based learning environments.

Within the LOGO community, much emphasis has been placed on teaching planning,
the primarily rationale for which has been that this is a possibly

transferable skill. However, while clarity of goals at the outset of the
problem solving process may be advantageous, the kind of tentative approach to
problem solving evident in the records in this study, with poorly articulated
goals which only become clarified within the problem solving process, may be

natural and inevitable. What may be most significant about this task
environment is that it is so supportive of the process of goal articulation.

15
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Given the highly dubious expectations for transfer of skills, excessive focus
on planning may be unnecessary and even counterproductive. What this study
suggests is the importance of engineering supportive computer-based learning
environments which enable students to cope with highly complex tasks.
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Appendix A: Partially Automated Process Analysis

Partially automated process analysis (PAPA for short) is the name applied tothe method of recording the programming process and developing a
representation of it in the form of a problem behavior graph. The followingpages illustrate the stages that are involved in collecting and analyzing theprogramming process.
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PRSSP1.REC SSPI.REC [ SS] [2 - 9 - 1989]
DE: [TO HOUSE] [] [[136] [273]]
ED: [ED] [] [[30] 174]]

ED: [ED "HOUSE] [[[TO HOUSE] [[ SIDE1] [REPEAT 4 [FD:SIDEI RT 90]]]]] [[193] [789]]

IM: [CS] [[74] [16]1

DE: [TO DOOR] [ERT 90] [FD:SIDEI / 2] VD:SIDE! / 3 RT 90] [FD / 4 RT 90]] [[466][2161]]

ER: [ED:DOOR] [36 [DOOR HAS NO VALUE] IGET.PROC.NAMES [RUN :AUCTION] RUN DOOR]MS] [6]]

ED: [ED "DOOR] MT() DOOR] USIDE1] ER? 90] [FD:SIDE1 / 2 LT 90]1] (ITO RECTANGLEESIDE1]
[REPEAT 2 [FD / 3 RT 90 F0:5I0E1 / 4]]]]] [[236] [2852]]
ED: [ED "HOUSE] [[[TO HOUSE] U5I0E1] [REPEAT 4 [FD:SIDEI RT 90]]]]] [[379] [184]]
ED: [ED "HOUSE] [[[TO HOUSE1] U8I0E1] [REPEAT 4 [FD :5I0E1 RT 90]]]]] [[254] [130]]
ER: [TO HOUSE :SIM] [1 [HOUSE IS ALREADY DEFINED] *CONDITIONS. MODES [IF FIRST :OACTION
="TO [RUN :HACTION SOP.DEFINITION :IACTION STOP]] TO HOUSE] ([343] [5]]
ED: [ED "HOUSE1] [UTO HOUSEI] USIDE1] [HOUSE :SIDEI] [DOOR :SIDE1] [RECTANGLE :8I0E1]]]]

[[600] [1086]]

[HOUSE1 50] [] [[241] [311]

ED: [ED "RECTANGLE] [[[TO RECTANGLE] [(SIDEI]
[REPEAT 2 [FD:SIDEI / 3 RT 90 FD:SIDE1 / 4 RT 90]]]]] ([264] [882]]

[CS] [[40] [4]]

[HOUSE1 50] [] [[88] [14]]

Figure Al: Raw record generated by the record generator

The recording program (RECORDER) records the actions taken by the subject, and
these actions are classified by modes. These modes are:

1) the immediate mode, which is the mode in which instructions are
issued and immediately interpreted;
2) the definition mode, initiated by typing "TO" in the immediate mode,
which is used to define procedures;
3) the edit mode, which is the full-s..:reen editor in which procedures
are constructed;
4) the error mode, which is "entered" wherever an error occurs;
5) load and save modes are entered whenever procedures are loaded or
saved; and
6) restart mode, which occurs when the program crashes and has to be
restarted.
Each line represents a complete action; for instance, in the immediate

mode, it is the complete action ended with a carriage return, in the define
mode, when the definition is completed, and in the edit mode when the editor
is exited. The first element on the line classifies the action by mode. What

follows is the elements necessary for specifying action. The element following
the mode descriptor is the action which initiated entrance into the mode. For

the define and edit mode actions, the procedure definitions are listed. The
last element in the line is the time stamp information; in tenths of a second,
the time from the previous action and time to completion of the action.

20

21



(1) (13.6 / 27.5 / 41.1 / 0:00:41) DE: TO HOUSE
TO HOUSE
>END

(2) (3 / 7.4 / 10.4 / 0:00:51) ED: ED

(3) (19.3 / 78.9 / 98.2 / 0:02:29) BD: BD "HOUSE
TO HOUSE :SIDEI
REPEAT 4 [FD:SIDE1 RT 90]
END

(4) (7.4 / 1.6 / 9 / 0:02:38) Ilk CS

(5) (46.6 / 216.1 / 262.7 / 0:07:01) DE: TO DOOR
TO DOOR
>ET 90
>FD :SIDE1 / 2
>FD:SIDEI / 3 RT 90
>FD:SIDEI / 4 RT 90
>END

(6) (5.8 / 0.6 / 6.4 / 0:07:07) ER: ED:DOOR
36 DOOR HAS NO VALUE

(7) (25.6 / 285.2 / 310.8 / 0:12:18) EIX ED "DOOR
TO DOOR :SIDE1
RT 90
FD :SIDE1 / 2 LT 90
END
TO RECTANGLE :SIDEI
REPEAT 2 [FD:SIDE1 / 3 RT 90 FD:SIDE1 / 4]
END

(8) (31.9 / 18.4 / 56.3 / 0:13:14) Elk ED "HOUSE
TO HOUSE :SIDEI
REPEAT 4 [FD:SIDE1 RT 90]
END

(9) (25.4 / 13 / 38.4 / 0:13:53) ED: ED "HOUSE
TO HOUSE1 :SIDEI
REPEAT 4 [FD:SIDEI RT 90]
END

(10) (34.3 / 0.5 / 3458 / 0:14:28) EL TO HOUSE :SIDE1
1 HOUSE IS ALREADY DEFINED

(11) (60 / 108.6 / 168.6 / 0:17:16) ED: ED "HOUSE1
TO HOUSE1
HOUSE :SIDEI
DOOR :SIDEI
RECTANGLE :SIDE1

Figure A2: Record printed by the record generator

An option of the analysis program (ANALYZE) is a program which puts the

printed record into a readable form. The lines are numbered. The time

information is then listed and includes the time from the previous action, the

time to completion of the action, the total time for the action, and the time

from the start of the recording of the session. The initiating action follows

(bold has been added), and what was done in the mode is listed on the lines

below.
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[1) (13.6 / 27.5 / 41.1 / 0:00:41) DE: TO HOUSE
TO HOUSE
>END
new units:

[2) (3 / 7.4 / 10.4 / 0:00:51) ED: BD

(3) (19.3 / 78.9 / 98.2 / 0:02:29) Eft ED "HOUSE
ITO HOUSE :SIDE!
*1 REPEAT 4 [FD:SIDE1 RT 901
END
old units:
new units: UREPEAT 4] 1] [(FD:SIM] 2] [[AT 90] 3]
3 inserts: I[REPEAT 4] 1] [[FD :SIDE1] 2] URT 90] 3)

[4) (7.4 / 1.6 / 9 / 0:02:38) IV: CS

(5) (46.6 / 216.1 / 262.7 / 0:07:01) DE: TO DOOR
TO DOOR
1 >RT 90
2 >FD :SIDE1 / 2
3 >FD :SIDE1 / 3 RT 90
4 >FD:SIDE1 / 4 RT 90
>END
new units: [[RT 90] 1] [[FD :SIDEI] 2] [[/ 2] 3] [[FD:SIDE1] 4] [[/ 3] 5] [[RT 90] 6] [[I'D:SIM] 7] [[/
4] 83 [[RT 90] 9]
9 inserts: [[RT 90] 1] [(PD :SIDE1] 2] [[/ 2] 3] [[FD:SIDE1] 4] [[/ 3] 5] URT 90] 6] RFD :SIDE1] 7] [[/
4] 8] [[RT 90] 9]

(6) (5.8 / 0.6 / 6.4 / 0:07:0'7) ER: ED:DOOR
36 DOOR HAS NO VALUE

(7) (25.6 / 285.2 / 310.8 / 0:12:18) ED: ED "DOOR
TO DOOR :SIM
=I RT 90
*2 FD :SIDE1 / 2 LT 90
END
old units: [MT 90] 1] [[FD:SIDE1] 2] [[/ 2] 3] l[FD :SIDE1] 4] [[/ 3] 5] [[RT 90] 6] [[FD :SIDE1] 7] ([/ 4]
8)[[RT 90] 9]
new units: [[RT 90] 1] RFD :SIDE1] 2] I[/ 23 3] [[LT 90] 4]
6 deletes: ([FD :SIDE1] 4) [[/ 3] 5] URT 90) 6] [[PD:SIDE1] 7] [[/ 4] 8] [[RT 90] 9]
1 inserts: [[LT 90] 4]
TO RECTANGLE :SIDEI
1 RBPEAT 2 [FD:SIDEI / 3 RT 90 FD:SIDE1 / 43
END
new units: UREPEAT 21 I] [[FD:SIDE1] 2] II/ 3] 3] [[RT 90] 4] [[FD:sIDE1] 5] RI 41 6]
5 inserts: [(REPEAT 1] 1] [IFD :MEI] 2) [[/ 3] 31 [ERT 90] 4] [[FD:SIDEI] 5] [[/ 4] 6]

(8) (37.9 / 18.4 / 56.3 / 0:13:14) ED: ED "HOUSE
Unchanged: HOUSE

Figure A3: Record generated by the encoder

Another option of the analysis program (ANALYZE) is designed to facilitate
manual checking and elaboration of the automated encoding. The lines of a
procedure are numbered to facilitate comparisons with the previous version.
An asterix indicates a change in the line, an equal sign indicates the line
remains the same. Old and new instructional units are listed. Each unit
(defined as a LOGO primitive and its inputs) is listed and numbered, and then
the differences between the old and new version of the procedure are given in
terms of inserts and deletes.
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FILENAME: B:KSP1.REC
[define HOUSE] [) [defl [1] [HOUSE] []
() [] (app] [1] [HOUSE] [1 [41.1]

l] [1 [unchanged] [2] [1 [][10.4]
[1 1] [1 [3] [HOUSE] [1[98.2]

[1 [invokel] [4] [CS] [1 [9]
[define DOOR] [] [def)(S] [DOOR] []
(1 [] [app] [5] [DOOR] [1 [262.7]

t] [1 [error] [6] [ED:DOOR] [DOOR HAS 1110 VALUE] [6.4]
I/ I] (71 [DOOR] (3
[define RECTANGLE] [1 [def] [7] [RECTANGLE] [1
[j [] [app] [7] [RECTANGLE) [] [310.8]

I] (] [unchanged] [8] [HOUSE] [][56.3]

[define HOUSE1] [] [def] 1911HOUSE1] [T

11 [] [app] [9] (HOUSE1) [] [38.4]
[] [1 [error] [10] [TO HOUSE :SIDE1] [HOUSE IS JCLREADY DEFINED] [34.8]
(1 [] (3 [11] [HOUSE1] (][168.6]

[] (1 [invoke] [12] (HOUSE1 SO] [] [27.2]
I] [] [j [13] [RECTANGLE] (][114.6]
l] (3 [invoke] [14] [CS] (j (4.4]
[] [1 [invoke] [15] [HOUSE) SO] [] [10.2]

Figure A4: Empty slots produced by the functional record generator

The slot record can be generated by the analysis program (ANALYZE;; it
consists of a series of lines corresponding to the actions in the record.
Operators are identified in the encoding process. This slot record is used
manually the investigator to group and identify the functions of the
operators. In grouping operators according zo their functions, additional
lines are added as required. The description of the function goes in the
first slot, and the descriptim of its superordinate function in the second
slot. The third slot is to be filled with the type of operator (i.e., append,
insert, delete, invoke, unchanged, error, etc.). The line number, the
initiating action, comments or error messages, and the total time the action
took follow.
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FILENAME: B:SSPI.REC
[whole] 0 ol [] El
[square] [whole] [] [] [] [./
[define HOUSE] [squar t] [def] [1] [HOUSE] [] [41.1]
[examine HOUSE] [square] [unchanged] [2] [HOUSE] [] [10.4]
[use variables in command line of HOUSE] [square] [ins w/in] [3] [HOUSE] []
[make square] [square] [app] [3] [HOCRE] [][98.2]
[clearscreen] [square] [invoke] [4] [CS] l] [9]
[door] [whole] [] [] [] []
[define DOOR] [door] [def] [5] [DOOR] []
[position, draw door] [door] [app] [5] [DOOR] [][262.7]
[edit nooR1 [door] [error] [6] [ED:DOOR] [00OR HAS NO VALUE] [6.4]
[take out door] [position, draw door] [del] L7] [DOOR] []
[turn in to draw door] [position, draw door] (app) [7] [DOOR] []
[rectangle] [door] [] I] [] []
[define RECTANGLE] [rectangle] [def] [7] [RECTANGLE] []
Ido rectangle] [rectangle] [app] [I] [RECTANGLE] [310.81
[exaaine HOUSE] [square] [unchanged] [8] [HOUSE] [] [56.3]
[define HOUSEI] [whole] (den [9] [HOUSE1] [aakes a superprocedure]
[use contents of HOUSE] [whole] [app] [9] [HOUSE1] [1 [38.4]
[define HOUSE] [whole] [error] [10] [TO HOUSE :SIDE1] [HOUSE IS ALREADY DEFINED] [34.8]
[empty contents of HOUSE1] [whole] [del] [11] [HOUSEI] []
[aake call to HOUSE] [whole] [app] [11] [HOUSE1] []
[make call to DOOR] [whole] [app] [11] [POUSE1] []
[make call to RECTANGLE] [whole] [app] [11] [HOUSE1] [1[168.6]
[test HOU SE1] [whole] [invoke] [12] [HO USE1 50] [door on side and incomplete] [27.2]
[put in last angle] [whole] [app] [13] [RECTANGLE] [1 [114.6]
[test HOUSE1] [whole] [] [] [1
[clearscreen] [test HOUSE1] [invoke] [14] [CS] [] [4.4]
[test it] [test HOUSE1] [invoke] [15] [HOUSE1 50] [][10.2]

Figure AS: Filled slots for generating the functional record

This shows the siots as filled by the investigator. The record begins by
designating a top-level function, which is to complete the whole task. The
next function is the initial function which is to draw a square with the whole
as its superordinate function. Operators are grouped according .to their
specific functions. The next general function is the door, which also has the
whole as its superordinate function. The creation of the superprocedure,
HOUSE1, which integrates the door and the square, has the whole as its
superordinate function.
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FILENAME A:SSP1.SL
G: whole

G: square
0: define HOUSE ( def ) < 1 > { HOUSE } < 41.1 >
G: examine HOUSE ( unchanged ) < 2 > ( HOUSE ) < 10.4 >
G: se variables in command line of HOUSE ( ins w / in ) < 3 > { HOUSE )
0: make square ( app ) < 3 > { HOUSE } < 98.2 >
0: clearscreen ( invoke ) < 4 > { CS } < 9 >

0: door
G: define DOOR ( def ) < 5 > { DOOR }
G: position, draw door ( app ) < 5 > { DOOR } < 262.7 >
0: edit DOOR ( error ) < 6 > { ED:DOOR } < 6.4 >

( DOOR HAS NO VALUE )
S: position, draw door

0: take out door ( del ) < 7 > ( DOOR )
0: turn in to draw door ( app ) < 7 > ( DOOR )

0: rectangle
0: define RECTANGLE ( def ) < 7 > RECTANGLE )
G: do rectangle ( app ) < 7 > { RECTANGLE } < 310.8 >

S: square
G: examine HOUSE ( unchanged ) < 8 > ( HOUSE ) < 56.3 >

G: define HOUSE1 ( def ) < 9 > { HOUSE1
( makes & superprocedure )

0: use contents of HOUSE ( app ) < 9 > { HOU SEI < 38.4 >
0: define HOUSE ( error ) < 10 > { TO HOUSE :SIDEI < 34.8 >

( HOUSE IS ALREADY DEFINED )
G: empty contents of HOUSE! ( del ) < II > { HOUSE! }
G: make call to HOUSE ( app ) < 11 > { HOUSE1 }
0: make call to DOOR ( app ) < 11 > { HOUSE1
G: make call to RECTANGLE ( app ) < 11 > { HOUSE1 < 168.6 >
G: test HOU SEI ( invoke ) < 12 > HOUSE1 50 < 21.2 >

( door on side and incomplete )
0: put in last angle ( app ) < 13 > RECTANGLE ) < 114.6 >
G: if.st HOUSE1

G: clearscreen ( invoke ) < .4 > ( CS ) < 4.4 >
G: test it ( invoke ) < 15 > ( HOUSE! 50 ) < 10.2 >

Figure A6: Functional record

Another program (GENERATOR) takes as input the slotted record and prints out a

functional record which is indented according to the structure of the

functions. "G" represents a new function or goal; all the functions appearing

below it to its right are considered subordinate functions. "S" represents a

superordinate function which has been previously identified.
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Coinciding (CND)

Enclosing (ENG)

Enclosed (END)

Inter linking (ITG)

Interrupted (IND)

Interrupting (ING)

CND _ CND

ENG

END

ITG

ITG

Figure A7: Episodal structures

The technique of episoding specimen descriptions employed by Barker and Wright
(1971) is used on the functional record. Barker and Wright's categorizations
and representations of episodes are closely followed here. Coinciding
episodes occur when different episodes intersect from beginning to end.
Enclosing and enclosed episodes occur when a part of an episode intersects
with the whole of another. The longer episode is the enclosing episode, the
shorter the enclosed. Interlinking episodes occur when one part of an episode
intersects with part of another. Interrupting episodes occur when an episode
occurs in the context of another episode but has a different direction.
Isolated episodes (not illustrated) occur when an episode occurs alone.
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FILENAME A:S5P1.SL
(3: whole

1

CIT::no HOUSE ( def ) < 1 > ( HOUSE ) < 41.1 >
u: examine HOUSE ( unchanged ) < 2 > I HOUSE } < 10.4 >
43: we vadables in command line of HOUSE ( ins w / in ) < 3 > ( HOUSE}
0: make square ( app ) < 3 > 1 HOUSE 1 < 982 >
(3: clearscreea ( invoke ) < 4 > ( CS ) < 9 >

1: door
Ch define DOOR ( def ) < 5 > ( DOOR )
0: positicm, draw door ( app ) < 5 > 1 DOOR 1 < 262.7 >
0: edit DOOR ( mot) < 6 > ( ED :DOOR 1 < 6.4 >

( EOM HAS NO VALUE )
S: politica, draw door

Ck take out door ( del ) < 7 > f DOOR 1
G: tam in to draw door ( app ) < 7 > ( DOOR )

G: recta*
G: define RECTANGLE ( def ) < 7 > ( RECTANGLE )

...4.irdakirecton810 ( &PP ) < 7 > i RECIANGLE ) < 310.8 >

0: examine HOUSE ( unchanged ) < 8 > f HOUSE ) < 56.3 >
CI: dam HOUSE1 ( def ) < 9 > ( HOUSE1 )

( makes a mtpmpocedine )
43: use cootats of HOUSE ( app ) < 9 > ( HOUSE1 ) < 38.4 >
G: define HOUSE ( mot ) < 10 > ( TO HOUSE :SIDE1 1 < 34.8 >

( HOUSE IS ALREADY DEFINE) )
G: empty contents of HOUSE1 ( del ) < 11 > 1 HOUSE1 }
G: make call to HOUSE ( app ) < 11 > ( HOUSE1 )
G: make call to DOOR ( app ) < 11 >1 HOUSE1 )
Q: make con to RECTANGLE ( app ) < 11 > ( HOUSE'. ) < 168.6 >
0: test HOUSE1 ( invoke ) < 12 > ( HOUSE1 50 ) < 272 >

( door na side and imxmOMe )
CI: put in Mat angle ( app ) < 13 > ( RECTANGLE ) < 114.6 >
CI: test HOUSE1

G: cies/screen ( invoke ) < 14 > ( CS ) < 4.4 >
0: teat it ( invoke ) < 15 > ( HOUSE1 50 ) < 102

Figure A8: Problem bebavior graph

The problem behavior graph is developed by the investigator manually episoding
the functional record. A complete episode is represented here which includes
drawing a square shape with a door, most of which occurs within the procedural
space. The subepisodes consist of actions of developing procedures to draw a
square and then to draw a door, integrating them into a superprocedure, and
finally the testing and debugging of the superprocedure. This is an example
of a modular strategy.
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Table 1: Levels of stIategies

Strategies articulation
at outset

AMM

component
development

way trial space
employed

top-down

breadth-first
refinement

whole at all
levels

refined

nominal abstract level
only

depth-first

stratification sufficient for
testing

depth-first as
required

sequential by order of
instructions

depth-first in
order

component-based
.

refinement

.

all at once

incremental bit by bit

modular by subunits
1

subsidiary

anticipatory
search

get information
prior to testing

debagging
strategies

seek feedback
for modifications

tactics for
debugging

get information
for debugging
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Table 2: Results of measures

ID ranks
components

ranks
knowledge

1st task
strategies

2nd task
strategies

3rd task
strategies

S1 1, 1, 1

.

1, 1, 1

ref, inc-mod
bfr
inc, ref

strat
inc, ref, mod

S2 4, 4, 2 5, 5,

-
2 'nom

inc
-> bfr

inc, ref

.

strat
inc, mod

S3 2, 7, 8 4, 8, 5

inc, mod, ref
seq
inc, mod

strat
inc

S4 5, 2, 7 7, 4, 7

ref, mod, inc
strat
inc-ref

strat
ref

S5 9, 5, 3 2, 7, 3

ref, inc, mod
seq
inc mod-ref

S6 3, 3, 5 6, 3, 4
inc. ref

bfr
inc

nom
ref-mod

S7 6, 6, 6 8, 6, 9

inc, ref
bfr
ref-inc

strat
inc, ref, mod

S8 7, 8, 4 3, 2, 8
inc, ref

strat
inc

strat
inc, mod

S9 8, 9, 9 9I , 9 , 6

inc, ref, mod
seq
inc inc, ref

Note. ranks components refers to the ranking of the students according to the
number of components they were able to implement within the time limits; ranks
knamledge refers to the ranking of the students according to the number of
items they got correct on the test of knowledge. inc = incremental strategy,
ref = refinement strategy, mod = modular strategy, bfr = breadth-first
refinement strategy, strat = stratification strategy, nom = nominal strategy,
seq = sequential strategy.
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Table 3: Interoorrelations among measures

1st 1st 2nd
task in-cls task

1st

2nd
in-cls

3rd
task

3rd
in-cls

task 1.00 .44 .41 .34 .30 .27

1st
in-cls .44 1.00 .34 .50 .83* .55

2nd
task .41 .34 1.00 0o* 48 55

2nd
in-cls .34 .50 .65* 1.00 .69* .24

3rd
task .31 .83* .48 .68* 1.00 73*

3rd
in-cls .27 .55 .55 .24 73* 1.00

Note. The programming tasks are referred as tasks, whereas the in-class
measures of programming knowledge are referred to using the abbreviation "in-
cls." The asterix indicates a significant correlation (p> .10).
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House-playhouse
TO HOUSE
REPEAT 4 [FD 40 RT 90]
FD 40 RT 30
REPEAT 3 [FD 40 RT 90]
FD 40 RT 30
FD 40 RT 90 FD 15 RT 90
REPEAT 2 [FD 20 LT 90 FD 10 LT 90]
END

TO HIGH.LOW
GET.NAME
GENERATE.RANDOM.NUMBER
PLAY.GAME
INFORM.BY.NAME
PRINT.NUMBER.OF.GUESSM
PRINT.GUESSES
END

TO PLAY.GAME
ENTER.GUESS
CHECK.GUESS
IF WON? = "YES [STOP]
PLAY.GAME
END

TO HANGMAN
ENTER.SECRET.WORD
DRAW.GALLOWS
PLAY.GAME
END

TO HOUSE
SQUARE
TRIANGLE
DOOR
END

High-low

TO PLAY.GAME
ENTER.GUESS
IF IN.WORD? = "YES [GET.POEITION]
IF IN.WORD? = "NO [HANG]
IF ALL.LETTERS? = "YES [WON STOP]
IF ALL.HUNG? = "YES [LOST STOP]
PLAY.GAME
END

Hello, what's your name? Alan
Enter your guess. 50

Too low.
Enter your guess. 75

Too high.
Enter your guess. 62

Too high.
Enter your guess. 56

Correct Alan; 4 guesses
Here they are:

50
75
62
56

Hangman

HAN_PIAN

Figure 1: The three tasks made simple

32

31



a

111TO HOME
REPEAT 4 IFD 40 RT sol
FD4ORM
REPEAT 3W0 40 RT 1201
END

Figure 2: The two problem spaces

Note. This is, of course, a bit of a caricature of the two problem spaces.
It is loosely based on a figure appearing in Card, Mbran and Newell (1984).
Problem spaces and their states are symbolic structures rather than physical
states on a computer screens, but their content can be suggested by the
interaction of the hairless fellow with the two screens on which are
represented a procedure under development in the edit mode and its output in
the immediate mode.
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proceduxal

space state

trial
space state

functional

hierarchy

functions

operators

episodes

TO NOM
SOW=

TO 11)=1:12
9121ARB

TRIANGL)I
BIND

>MOUE

TO HOUSS
13($3713P1

FLIP

END

am* um* mo. mi. um. IN.

Figure 3: The elements of the representation

Note. The elements involved in the representation of the programming izocess
are pictured here in an abstract form. The screens represent states of the
procedural space and the trial space as the program evolves. The operators
are indicated as horizontal arrows, with the vertical arrows indicating the
functions of the operators which take their place in the functional
hierarchies represented in the trees in the circles. The brackets at the
bottom show the episodes. Pictured here is a set of interlinked episodes and
a cycle in which the procedure is constructed, tested, and revised.
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Procedural space Problem behavior graph Trial space

<0
ss SCOW
>rzeur 5 [SQUARE]
END

<a>
TO SQUARE
REPEAT 4 (rD 40 AT 90]
BEM

<3>
IV BEGIN

WHILE
RED

TO SQUARE
=PEAT 5 [PD 40 RT 90]
IND

TO TRIABGLZ
LT 90
IT is
FD 20
LT 36
FD 20
END

<0>
70 TRIANGLE
ST 90
MP 18
71) 20
LT 36
I'D 20
END

<2>
TO BitOIN
CO
SQUARE
TRIANGLE
ROD

<11>
70 SQUARE
REPEAT 4 [rD 40 RT 90]
END

<13>
TO 3017ARIL
REPEAT 6 [rD 40 RT 90]
END

<g>
CS

<5>
TRIANGLE

VN
<6>
Cs

<7>
BEGIN

6: WIEVAIO lath root

0: define BEGIN (det) <I> (BEGIN)

0: square

0: multiple SQUARBs (app) <1> (BEGIN) <132.6>

G: define SHANE (dot) <2> (SQUARE)

0; 1020 Silents (aPP) <2> (MUNE) <59.4>

it multiple calls (dol) <3> (BEGIN)

,. coo

0: call TRIANGLE (app) <3> (BEGIN)

0: start roof (del v/in. ins WU) <3> (301A22)

0: define TRIANGLE (det) <3> (TRIANOLL)

C: nate triangle (app) <3> (garANOLL) <120.5>

0: test TRIANGLE

0: clear screen (invoke) <4> (CLS) <2.1>

test it (invoke) <5> (TRIANGLE) <6.7>

<10>
BEGIN

111
<12>MIX

1;ii
<it>
BEGIN n

0: test BEGIN

0: clear screen (invoke) <5> (CLS) <2.7>

0: test it (invoke) <7> (BEM) <3.7>

0: get roof on top (del. ins) <8> (T0In2C1.21 12.2>

G: ease tests (ins) <9> (BEGIN) <8.1>

0: test BEGIN (invoke) <10> (BEGIN) <3.4>

0: get upright (dol. las) <11> (SOMANX) <19.4>

0: test WWII (invoke) <12> (BEGIN) <3.6>

G: test 82:

get aprigkt

0: invert aaaaa (del. ins) <13> (SQUABS) <16.1>

1:821 (invoke) <14> (awn) <a>

Figure 4: The problem behavior graph

Note. States of the two problem spaces are represented on the left and the
right of the problem behavior graph and are keyed to the graph by line numbers
in the record. The graph itself is an episoded functional record. The
brackets demarcate the episodes. Seven episodes are shown; two enclosing, six
enclosed, and three interlinked (see Barker & Wright, 1971). Indentations
represent the hierarchical structure of goals and subgoals. "GP stands for
goal; a previously set superordinate goal which is not adjacent to the subgoal
is indicated by an "S" rather than a "G." The goals are briefly identified.
The operators associated with these goals operate on instructional units; such
a unit is defined as a LOGO primitive or defined procedure and its inputs.
Categories of operators are indicated in parentheses. The procedural space
operators are "def" for define, "app" for append, "ins" for insert, and "del"
for delete (when a part of an instructional unit is the object of an operator,
"w/in" is indicated). Trial space operators are designated as "invoke," and
operators that result in errors are indicated simply as "error." The numbers
immediately following the operators indicate the line number in the record,
and the action or procedure affected are indicated in brackets after the line
number. Error messages follow in parenthesis. The time from the last action
to the completion of the action is given for the last set of operators for the
line. This figure shows a depth-first, component-based modular strategy in
which subcomponents of the square with roof are separately defined (SQUARE and
TRIANGLE) and then integrated into the whole (BEGIN).

35 BEST copy AVAiLLL:



36



subjects

S5

S4

52

SI

bfr
m r

iv rd ad

strat

r r

nd is sd Id sd Is rd

seat
I m l 1 I

sd ex If lc Id sd sd

Seat

ni sd ex vs sdtdisd
m 1,,,,,,

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 1

minutes
F gure 6: Strategies exhibited in Hangmma tak

Note. bfr= breadth-first refinement strategy, zt= nominal, strat =
stratification, seq= sequential strategy, i = incremental strategy, mi=
modular strategy, r= refinement strategy, ic! = incorporative search, if=
inferential search, is= isolation search, rot= reactive debugging, sd=
symptomatic debugging, fd= focused debugging, ex= exploratory debugging, vs
= verification search. The divisions within the bars the time frames of the
episodes. Three levels of strategies are represented: The top-down
strategies are represented in the top of the bars; the depth-first, component-
based strategies are represent in the middle portion of the bars, and the
subsidiary strategies are represented in the bottom portion. The darkened
portion in the bar for S1 indicates an interruption.
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